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Abstract. We consider the dynamics of fluxons in two weakly coupled long Josephson 
transmission tines with localized impurities. The Uinsmission. the pinning and the destruction of 
the bifluxon mode are obtained. In the c3se when there is a collision of a free fluxon belonging 
to one line wilh a pinned Ruxon of the other line, we also observed three outcomes: capture of 
both Ruxons; elastic collision: transmission of both Ruxons at the impurity site. 

1. Introduction 

The study of fluxon propagation is a subject of considerable interest from both the 
theoretical and the practical point of view [11. The unavoidable presence of various 
types of inhomogeneity which occur during the fabrication of Josephson transmission lines 
(nu) modifies the dynamical and structural properties of the fluxons. In the framework 
of perturbation theories for non-linear fields and the adiabatic approximation [ 2 4 ,  the 
interaction may lead to the pinning of fluxons, the reflection and transmission of fluxons 
with distortion of the shape and a drastic change in the fluxon dynamical behaviour [5,6]. 

In recent years, particular attention has been devoted to the propagation of fluxons in 
weakly coupled and perturbed a s  17-91. It has been demonstrated that two colliding 
fluxons belonging to different lines can form a bound state owing to dissipative losses [7]. 
This is the bifluxon mode whose stability and dynamical behaviour during the interaction 
with local impurities is considered hereafter. The stability of the coupled model has also 
been investigated [9] and observation of phase-locking phenomena in self-resonant modes 
has been reported [SI. 

Our aim in this paper is twofold. Firstly, we study the stability and dynamics of the 
bifluxon mode in the presence of local impurities in both lines. Three possible outcomes 
are obtained crossing of the bifluxon mode; capture of the bifluxon mode which leads 
to the generation of a new but stationary bifluxon mode with a reduced width; finally the 
destruction of the bifluxon mode due to pinning of one of the components of the bifluxon 
mode. Secondly, we consider the collision of a free fluxon in one line with a fluxon pinned 
by a microshort (or microresistor) in the other line. Three outcomes are also possible: 
capture of both fluxons; elastic collision; depinning of the pinned fluxon without the capture 
of the free fluxon. This last outcome Ieads to the formation of a bifluxon subsequently. The 
organization of the paper is as follows. 

In section 2, we present the model and describe the bifluxon mode. Section 3 deals with 
the analysis of the bifluxon stability and dynamics during the interaction with the impurity.. 
The collision of a fluxon belonging to one line 'with the pinned fluxon of the other l i e  is 
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considered in section 4. In section 5 we conclude and point out some interesting problem 
which have not been investigated. 

R Fokoua liwang et a1 

2. The model and the bifluxnn mode 

The dynamics of fluxons in a system of two inductively coupled JTLS in the presence of 
Iocal inhomogeneities are govemed by the following system of two coupled and perturbed 
sineGordon equations [71: 

4i.u - 4i.z.v + S h 4 i  = pi (2.1) 

where q5; (i = 1.2) are the wavefunctions, Pi are the perturbation forces of the form 

Pi = -fi - A&,, + - ~ E S ( X )  sin45 (2.2) 

and j = 1 if i = 2 or j = 2 if i = 1. 6 is the Dirac function. The subscripts x and I denote 
the derivative with respect to the normalized space unit x and time unit t ,  respectively. Here 
x and c aremeasuredin units of [4] { f i / 2 e I c [ l - ( M / L ) 2 ] ] ' ~  and (FZC~/~~Z,) ' /~ ,  respectively. 
fi = - I b i / l e  are the normalized bias currents on each line; hi = Gai@~/2eI,) ' /~ are the 
dissipation coefficients due to "telling of normal eIectrons amss the insulating barrier 
of the junctions (see [4] for details). The last tenn corresponds to a local inhomogeneity 
of the maximum Josephson current density (a microshort or a microresistor for positive or 
negative E, respectively). Throughout the paper, the term fi, Ai, CY and E are assumed 
small. In this model the surface loss in the superconductors as well as a capacitive coupling 
between lines are ignored. 

In the absence of perturbations (i.e. pi = 0). the system of equations (2.1) becomes two 
independent and exactly integrable sine-Gordon equations. The solutions corresponding to 
fluxons (or antifluxons) are 

&(x, t )  = 4tan-'{exp[ui(l: -Xi)]} (2.3) 

where q = il are the polarities of the fluons and X = Xoi + vir arc the coordinates of 
the centres of the fluxons, Xoi being the initial positions of the centres and vi the velocities 
of the fluxons. 

In the weakly coupled model, it is known that the coupling between the lies leads to a 
small distortion in the shape of the fluxons, the well known image of a fluxon of one line in 
the other line [7,10]. For the fluxon coordinates Xi, the McLaughlin-Scott [41 perturbation 
analysis leads to 

where X i j  = Xi - Xj is the distance between the centres of the fluxons. Equations (2.4) 
have been studied in 171, where it is demonstrated that, owing to energy dissipative loss, 
and under some threshold conditions, the two fluxons can fuse into a bound state called a 
bifluxon with a constant velocity 
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The distance between the two fluxons (or antifluxons) bound into a bifluxon is 

(2.6) 

in the attractive case (i.e. (YU~UZ > 0) and 

in the repulsive case (i.e. au1q c 0). For Xo we have obtained expressions slightly different 
from that obtained by Kivshar and Malomed [7]. In the attractive case, our expression is 0.5 
times their equation  and, in the repulsive case, the argument of the Napierian logarithmic 
function should be multiplied by z/16 to obtain their function. These expressions ((2.6) 
and (2.7)) are in good agreement with the numerical simulation of equations (2.4). 

3. Interaction of the bifluxon with impurities 

TO take into account the presence of the inhomogeneities on the coupled lines, we consider 
equations (2.1) with the full expressions of the perturbations Pi given in (2.2). We obtain, 
for the centres Xi of the fluxons, the following equations: 

d2Xi H dXj n ~ i ~ j  ( Xij ) 
dt2 4 dt sinhXfj tanh Xij - = -uiifi -Ai- - - 1-- +~uisech~Xi tanhXi .  (3.1) 

In the absence of the coupled junction (i.e. (Y = 0). the velocity of the uniform motion (i.e. 
E = 0) is given by 

The impurity in this case can pin the fluxon provided that the condition 

(3.3) 

obtained by energy considerations is satisfied [4]. 
In the case of coupled junctions, we have seen that a bifluxon can be formed, and it 

is stable until it reaches the close vicinity of the defect. No matter how small the defect 
is, it breaks the bifluxon. This makes analytical predictions rather complicated for the 
bifluxon mode. However, the study is done numerically using the fourthrorder Runge- 
Kutta method. This provides three possible outcomes at the impurity site: crossing of 
both fluxons (components of the previous bifluxon); pinning of one fluxon; pinning of both 
Auxons (figure 1). This is due to the influence of three potentials acting upon the fluxons 
at the vicinity of the impurity: the coupling potential between the fluxons given by 

Xij U = S(YO.U.- ' ' sinh Xjj 

the impurity potential given by 

(3.4) 

Vi = 4 ~ u i  sechZ X i  (3.5) 
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F i p  1. Outcomes of the callision for (a) the fluxon-fluxon bound st&e and (b) the fluxon- 
antifluxon bound state. The downward n o w  means a pinned wave, and the upward armw 
a transmined wave. Wherever there could be confusion, the numbers on top of each anow 
indicate which of the waves is transmitted or pinned. The panmelers are ar foUows: c = 0.1, 
A~=Az=0.1 . f i=0 .04 . (a) fz=0.05and~b)fz=-0 .05 .  

and obviously the potential due to the driving forces fi. 
We have assumed that the bifluxon approaches the impurity from large negative values 

of Xi (the impurity being localized at the site Xi  = 0 as can be seen from the Dirac delta 
function in equation (2.2)) and moving with constant velocity ub given by equation (2.5). 
The outcomes are the same for attractive and repulsive coupling between the fluxons, and 
attractive and repulsive inhomogeneities, but with different critical values of the height E of 
the impurity barrier. We give here a discussion of the results obtained during the numerical 
computation. In what follows, we shall for purposes of fluency and clarity refer to fluxons 
by their centres X1 and Xz. The case of the fluxon-fluxon bound state and the fluxon- 
antifluxon bound state are qualitatively different. In fact, in the former case, the impurity 
is either repulsive or attractive to both fluxons while, in the latter case, the impurity is 
attractive to one fluxon and repulsive to the other fluxon. 

3.1. Case of afluxon-fluxon boundstate (U, = uz = I )  

The interaction of the bifluxon with the amactive ( E  < 0) and the repulsive ( E  > 0) 
impurities is summarized in figure l(a) for a fluxon-fluxon bound state. The study is carried 
out for a set of fixed parameters (see figure I), which describes the general phenomena 
observed for such interactions. We mainly study the influence of the intensity of the 
amplitude E of the impurity potential on the motion of the coupled fluxons. The study 
provides some critical values of this amplitude, which subdivide the axis of E into firstly 
regions of crossing of both fluxons where they reconstitute the broken bifluxon long after 
they have passed the defect, secondly regions where only one of the fluxons is allowed to 
pass the impurity barrier, the other undergoing a damped oscillatory motion before or after 
the impurity site, depending on whether the impurity is repulsive or attractive to it, and 
to settle (i.e. U< = 0) finally close to the impurity site, and thirdly regions where the two 
fluxons are pinned, forming a different and stationary bifluxon (% = 0) near the impurity 
site. These values are represented in figure 1 by cC1 (or 6L1 for negative E )  below (or above) 
which the waves get over the impurity barrier; the second and third regions are separated 
by E ~ Z  (or E& for negative E )  above (or below) which the two waves are pinned. For this 
last outcome, we have plotted the time variation in the width X i j ( t )  of the bifluxon in 
figure 2 for E = 0.19, where one can see that the final value of Xj j  is negative, implying 
that Xz is pinned at a closer distance to the defects than X I  is, simply because, with the 
set of parameters used, the driving force fi is greater than fi and thus can better resist 
the repulsive impurity. The case of negative E provides a thiid critical value below 
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which the inverse of the phenomenon of the second region is observed; that is XZ which 
was pinned in the second region (i.e. €Az < E < €A1) now passes while XI is pinned (see 
figure I@)). A reasonable explanation for this situation is that, when the waves are drawn 
back by the attractive impurity, XZ happens to pass ahead of XI during their oscillations 
and the driving force fi, which is stronger than fi, combined with the attractive coupling 
potential cause Xz to go through the impurity. 

- ~ 3  
0 M 100 150 200 0.1 0.2 0.3 ' 0.4 - "b - t  

F w e  2. Variation versus time of the bifluxon width 
X ; j ( t )  in the case of a pinned bifluxon for E = 0.19 
and the parameters in figure l(a). 

Figure 3, critical value E,  versus the bifluxon velocity 
for U = I ,  = I ?  = 0.1. 

We have plotted in figwe 3 the graph of cC (the critical values of E below which 
the bifluxon mode is transmitted through the inhomogeneity) versus the velocity ub of the 
bifluxon for both the attractive and the repulsive inhomogeneity to the bound state of fluxons. 
It is observed in figures 1 and 3 that the critical values of E for attractive defects are greater 
than for the repulsive defects. This clearly shows that it is easier for the fluxons to pass an 
attractive defect than a repulsive defect. 

3.2. Case of aj?uon-untij?uon bound stnte 

Another interesting case that has attracted our attention is where the two waves have opposite 
polarities. In our study the fluxon is represented hy XI (q = 1) and the antifluxon by XZ 
(az = -1). For a = 0, equation (3.2) gives the velocity vi, of the uniform motion of 
the non-relativistic fluxons. This expression for utm shows that the antifluxon Xz will be 
driven to the right by a negative force fz. The coupling potential between the two waves 
becomes attractive for U 0. Figure l(b) gives the outcomes of the interactions of this 
bduxon with the attractive and with the repulsive inhomogeneity. They are qualitatively 
the same as for the fluxon-fluxon bound state; however, the various regions do not have 
the same lengths in both cases. 

The case of a negative coupling coefficient (a < 0) although not suitable for the JTL. 
(a = M / L  being positive), but interesting in the coupled monatomic chains of particles, 
e.g. the Frenkel-Kontorova model or adatomic chains [1&12], has led to outcomes similar 
to those presented above. 
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4. Interaction between a free and a pinned fluxon near the local inhomogeneity 

In this section we study the interaction between a free fluxon and a pinned fluxon. It is 
assumed that the first l i e  bearing XI has no impurity; the second line contains an impurity 
localized at the site XZ = 0 near which XZ is initially pinned. The stationary coordinate 
Xm of the pinned fluxon is determined by solving the equation 

R Fokoua 7iwang et a1 

where 

U& - k u z  fzXz + 4€Uz SKh2 Xz (4.2) 

since Xi is initially far from Xz. Solutions to equation (4.1) exist if the condition (3.3) is 
satisfied. 

One of the main purposes of this section is to find critical conditions for the depinning 
of the pinned fluxon. A similar study has been made by Malomed and Nepomnyashchy 
[13]. Their study was undertaken in the case where the two waves belong to the same line 
and thus interact through another type of potential. They demonstrated that, in the case of 
like polarities'of the fluxons, three different outcomes of the collision were possible: capture 
of both fluxons; capture of the free fluxon and depinning of the pinned fluxon, which they 
called exchange; finally depinning of the pinned fluxon without capture of the free fluxon. 
In the case of opposite polarities, the outcomes of the collisions were depinning, elastic 
collision, and annihilation of the fluxon-antitluxon pair. 

In our coupled model, the equations of motion are as follows: 

(4.3a) 

- = -Uzfz - Az- dxz + - auiuz ( 1-- ~ ~ , , )  + €02 sech' XZ tanh Xz. (4.3b) 
dzXz K 
dr2 4 dt sinhX1z 

The stationary solutions of (4.3), which may be seen as the state at which the two fluxons are 
pinned near the impurity, are obtained by setting dzXi/dtZ = dXi/dt = 0. The numerical 
study shows that, for certain values of the impurity amplitude 6 (for which condition (3.3) 
is not fulfilled), the set of equations (4.3) has no stationary solution, implying that the two 
fluxons cannot be held by the impurity. The initial conditions to compute the dynamical 
solutions of equations (4.3) are the following: at t = 0, X1 is far from the impurity site 
with an initial velocity vi = ru1  f1/4A and X2 = X ~ O ,  uz = 0, where XZO is the pinning 
point of XZ (i.e. the stable solution of equation (4.2)). 

The study provides three outcomes at the impurity site: capture, i.e. pinning of the free 
fluxon with the pinned fluxon remaining pinned: depinning of the initially pinned fluxon 
without capture of the free fluxon; elastic collision, i.e. the free fluxon passes the defect 
and the pinned fluxon remains pinned. 

4.1. Interaction berweenjkons with like polarities 

We discuss here the general result for both the barrier ( E  > 0) and the well (6 < 0) of 
the potential since the outcomes are qualitatively the same for both cases. It is obvious 



Dynamics of fluxom 9751 

-0.2 -0.1 0 ~ 0.1 0.2 

- E  

-0.2 -0.1 0 0.1 0 2  

-6 
Figure 4. Interaction regimes in the case of (a) the incoming Ruon and (b) the incoming 
antifluxon for the repulsive and the attractive impurity with fi = 0.05; regions I and 1'. 
transmission of both fluons; regions I1 and U', elastic collision; regions RI and Ut'. pinning of 
both fluxons. 

that, if the kinetic energy of the free fluxon is not sufficient compared with the repulsive 
coupling with the pinned X2, XI will be pinned. This means that there is a critical value 
of fi (fid since the velocity of the fluxon's uniform motion depends on f1) beneath which 
XI cannot pass the impurity region (it will necessarily be pinned because the driving and 
coupling forces acting upon it have opposite directions). This critical value f1d increases 
with increasing height (or depth) E of the impurity potential. Beyond and above fid, X1 
depins X,. Depinning is observed until another critical value fie is reached where the 
depinning ceases and elastic collision takes over. Unlike fid, fie decreases with increasing 
161. In figure 4 we have plotted the graph of flC versus 6; the variations in f1d are represented 
by the lower branches of the curves while the upper branches represent the variations in 
fie. The depinning zone F1 = lf,d - f1.l decreases as E increases, and finally vanishes for 
6 = E~ (cc = 0.18 in figure 4(0) for example). Figure 5 shows the graph of the pinning 
potential Uew for E = -0.13 and for E = -0.10. For small values of E the potential has 
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no equilibrium position. For greater values of e there are two extrema corresponding to the 
stable and unstable pinning positions of Xz. As X 1  goes into the impurity area, it shifts 
X Z .  If X z  exceeds the unstable equilibrium position, depinning is observed; if not, we have 

R Fokoua i'lwang et a1 

either capture or elastic collision. 

0 0.5 1 1.5 2 

x 2  
- 

F i m  5. The effective pinning potential U.a far X2 with fi = 0.05 for z = -0.10 (- - - -) and 
B = -0.13 (-). 

4.2. Interaction between fluwns with opposite polarities 

In the general case, this collision provides the same outcomes as in section 4.1. It is 
observed that the depinning zone F1 = l f ~ d  -fie] is larger than in the case of like polarities 
(see figure 4). This is due to the amaction between the two waves that makes the depinning 
easier than in the case of like polarities. 

5. Conclusion 

In this paper, we have studied the interaction of fluxons belonging to two inductively coupled 
JTLS with localized impurities. Using the McLaughlin-Scott 141 perturbation theory, we have 
simulated numerically the coupled differential equations of the fluxon coordinates perturbed 
by the impurity forces. Three outcomes have been obtained: transmission, pinning, and 
destruction of the bifluxon mode. In the case of the collision of a free fluxon belonging 
to one line with a pinned fluxon of the other line, we have also obtained three possible 
outcomes: capture of both fluxons, elastic collision, and transmission of both fluxons at the 
impurity site. 

Our study is effected in a non-relativistic limit. Also, we have not considered the 
newly established resonant interactions between fluxons and the generated impurity mode 
as well as radiative losses [5,14]. However, in real systems such as ours, the dissipative 
losses and the bias currents will destroy the resonant structure since the impurity mode 
will fade after their excitation 1141. On the other hand, direct numerical simulation of 
the inhomogeneous coupled equations (2.1) with additional coupling (e.g. the capacitive 
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coupling and the surface losses), as well as an experiment on the coupled inhomogeneous 
m, should be carried out to determine the accuracy of our results. It would also be 
interesting to undertake a study in the relativistic l i t  where it has recently been shown 
in a onedimensional s indordon  model [I51 that the soliton width can be altered through 
interactions with a localized substrate potential. Moreover, direct numerical simulation of 
(2.1) will help us to compute the currents and voltages of the junctions around the localized 
impuriv. 
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